Synthesis of 4-Hydroxy-15-oxaandrost-4-en-3-one and other Potential Aromatase Inhibitors from Sandaracopimaric Acid

M. Bordell Martín, A. Fernández Mateos* and R. Rubio González
Departamento de Química Orgánica, Facultad de Químicas, Salamanca, Spain

The stereoselective synthesis of 4 -substituted androstenes ($8 \beta, 14 \alpha$) 30 and 36 related to inhibitors of the enzyme aromatase and 5α-reductase has been achieved in a short-step sequence from sandaracopimaric acid. The synthetic strategy is the stereoselective construction of ring D, and the appropriate modification of the A-ring diterpene functionality to the enone system found in the aromatase inhibitors. A parallel sequence is developed to obtain the isomers $(8 \alpha, 14 \beta) 31$ and 41.

Inhibition of the enzyme aromatase, which catalyses the final stages of estrogen biosynthesis by some 4 -substituted androstenones $1-3$, is a valuable strategy in the therapeutic treatment of neoplastic diseases such as breast cancer. ${ }^{1}$ In addition, it has recently been shown that some 4 -substituted progestagens 4 and 5 are inhibitors of the enzyme 5α-reductase ${ }^{2}$ involved in the conversion of the male hormone testosterone into dihydrotestosterone, which has been implicated in prostate enlargement in later life. Reduction of dihydrotestosterone by inhibition of 5α-reductase could be a strategy for the control of prostatic hyperplasia and prostatic cancer.

$1 \mathrm{X}=\mathrm{OH}$
$2 \mathrm{X}=\mathrm{OMe}$
$3 X=O A C$

$4 X=F$
$5 \mathrm{X}=\mathrm{CN}$

In this context some recent work has been done on the synthesis of analogues of 4-hydroxyandrost-4-ene-3,17-dione 1, one of the most potent aromatase inhibitors known, with the aim of enhancing the antineoplastic activity. ${ }^{3}$ This encouraged us to prepare related compounds starting from sandaracopimaric acid 6, a readily available and inexpensive naturally occurring diterpenoid.

Results and Discussion

We were interested in the functionality shown by compounds 30 and 36 , in which the D ring has been altered by replacement of the methylene group C-15 by an oxygen atom and of the hydroxy or keto functions of $\mathrm{C}-17$ by hydrogen atoms. These modifications in functionality would be justified by the higher oral activity shown by 15 -oxasteroids and the low affinity shown by some receptors for 17-hydroxysteroids.

Sandaracopimaric acid 6 is a useful starting material for the synthesis of novel steroidal derivatives due to its suitable structural characteristics. ${ }^{4}$ Transformation of sandaracopimaric acid 6 to the target molecule required: (i) building the D ring; (ii) removing the methoxycarbonyl group attached to C-4 and in some cases the methyl group on $\mathrm{C}-4$; (iii) introducing the required functionality in the A ring.

We approach two types of transformation: $\mathbf{\longrightarrow} \mathbf{1 0} \longrightarrow$ $\mathbf{1 4} \longrightarrow \mathbf{1 9} \mathbf{2 1} \longrightarrow \mathbf{3 0}$, and $\mathbf{7 \longrightarrow} \mathbf{1 9} \longrightarrow \mathbf{2 3}$ $\xrightarrow{\mathbf{1 4}} \mathbf{\longrightarrow}$.

Construction of the D ring common to both transformations requires functionalization of carbons $\mathrm{C}-14$ and $\mathrm{C}-16$, and cyclization.

The first step was accomplished by hydroboration of methyl sandaracopimarate 7 with diborane generated 'in situ' from sodium boranuide and boron trifluoride-diethyl ether in diglyme. ${ }^{5}$ With a reagent: substrate ratio of $3: 1(3 \mathrm{~h}$; room temp.), followed by the usual oxidative work-up, a mixture of monohydroxylated products 8 and $9(23 \%)$ was obtained; dihydroxylated products 10 and $11(56 \%)$; and trihydroxylated compounds 12 and $13(14 \%)$. The $10: 11$ ratio was $30: 70$. When a six-fold excess of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ diborane solution in tetrahydrofuran (THF) was added to methyl sandaracopimarate 7 , and the reaction time was 1 h , the mixture obtained was the following: 8 and $9(24 \%) ; 10$ and $11(70 \%)$; and 12 and $13(4 \%)$. The $10: 11$ ratio was the same as above. While the minor diol 10 possesses the right configuration $(8 \beta, 14 \alpha)$ for access to trans-anti-trans androstanes, the major diol 11 has the inverse configuration $(8 \alpha, 14 \beta)$. This fact prompted us to

$R=H$
$7 \mathrm{R}=\mathrm{Me}$

9

$12(8 \beta, 14 \alpha)$
13 ($8 \alpha, 14 \beta$)

14 ($8 \beta, 14 \alpha$)

8

$10(8 \beta, 14 \alpha)$ $11(8 \alpha, 14 \beta)$

15 ($8 \alpha, 14 \beta$)

Table 1 Products obtained on allylic oxidation of the androstene 21

	Products, yield (\%)			
Conditions	$\mathbf{2 1}$	$\mathbf{3 0}$	$\mathbf{2 9}$	Others
$\mathrm{SeO}_{2}, \mathrm{EtOH}, 100^{\circ} \mathrm{C}, 22 \mathrm{~h}$	48		40	
$\mathrm{CrO}_{3}, \mathrm{AcOH}, 100^{\circ} \mathrm{C}, 1 \mathrm{~h}$		30	56	
$\mathrm{NBS}, \mathrm{CaCO}_{3}$, dioxane-water, $25^{\circ} \mathrm{C}, 2 \mathrm{~h}$		34	20	
$\mathrm{Na}_{2} \mathrm{CrO}_{4}, \mathrm{Ac}_{2} \mathrm{O}-\mathrm{AcOH}_{2} \mathrm{AcOONa}, 50^{\circ} \mathrm{C}, 23 \mathrm{~h}$	11	40	11	28
$\mathrm{CrO}_{2}\left(\mathrm{OBu}^{t}\right)_{2}, \mathrm{Ac}_{2} \mathrm{O}-\mathrm{AcOH}-\mathrm{CCl}$				
$\mathrm{CrO}_{3}, 80^{\circ} \mathrm{C}, 17 \mathrm{~h}$		29	17	10

transform compound $11(8 \alpha, 14 \beta)$ into $10(8 \beta, 14 \alpha)$; however, we considered it interesting to perform the transformation into androstanes from both diols.
Cyclodehydration of diols 10 and $\mathbf{1 1}$ separately to oxolanes (tetrahydrofurans) $\mathbf{1 4}$ and $15{ }^{6}$ was carried out firstly with toluene-p-sulfonyl chloride in pyridine, with 18% and 36% yield, respectively; a better yield (43%) was obtained with boron trifluoride-diethyl ether. The best conditions for the cyclization of diols 10 and 11 were attained with toluene- p-sulfonic acid (PTSA) in refluxing benzene, which afforded 15 -oxaandrostanes 14 and 15 in quantitative yield. In practice, the cyclization is better to be carried out with the diol mixture because the separation of ethers $\mathbf{1 4}$ and 15 is easier than that of diols $\mathbf{1 0}$ and 11.
The transformation of diol $11(8 \alpha, 14 \beta)$ into the ether 14 $(8 \beta, 14 \alpha)$ was carried out by the sequence $\mathbf{1 1} \longrightarrow \mathbf{1 6} \longrightarrow \mathbf{1 7}$ $\longrightarrow \mathbf{1 7 a} \longrightarrow \mathbf{1 8} \longrightarrow \mathbf{1 4}$. Selective protection of the primary alcohol of diol 11 was achieved quantitatively with trityl chloride in dimethylformamide (DMF) ${ }^{7}$ at $25^{\circ} \mathrm{C}$. The oxidation of protected compound 16 with chromium trioxide in pyridine yielded ketone 17 (96%). Treatment with sodium methoxide in methanol epimerized 17 to compound 17a in quantitative yield. The reduction of compound $\mathbf{1 7 a}$ with sodium boranuide afforded a 7:3 mixture of hydroxy derivatives 18 and 18a in 93% yield. Finally, deprotection of the primary hydroxy group of compound 18 with PTSA succeeded with concomitant formation of a THF derivative, to give compound 14 in quantitative yield.

For the elimination of the carboxylic and methyl groups at C-4, hydrolysis of the ester group is required; this was accomplished in quantitative yield with potassium hydroxide in ethylene glycol under reflux for both isomers 14 and 15 individually.
Oxidative decarboxylation of acid $\mathbf{1 9}$ with lead tetraacetate (LTA) in benzene gave a $31: 36: 33$ mixture of olefinic ethers 21 $23(66 \%)$ and the acetate $24(24 \%)$. Pyrolysis of compound 24 quantitatively afforded a $2: 1: 2$ mixture of ethers 21-23. The absolute yield of olefinic ethers 21, 22 and $\mathbf{2 3}$ from acid 19 were 29,31 and 31%, respectively. The same process carried out with acid 20 afforded the olefinic ethers 25, 26 and 27 in 26, 31 and 30% yield, respectively.
Our first target, compound 30, required a two-step sequence from the mixture of olefinic ethers 21-23. Treatment of the mixture with iodine in refluxing benzene ${ }^{8}$ afforded the tetrasubstituted olefinic 21 after half an hour, in quantitative yield. Allylic oxidation of androstene 21 was attempted with several reagents with the results shown in Table 1.
The best yield of enone 30 was obtained with the complex chromium trioxide-dimethylpyrazole. ${ }^{9}$ The mild conditions and short reaction time reduce the proportion of polar-product oxidation. However, the epoxide 29 was obtained in 13% yield. A lower reaction temperature $\left(-78^{\circ} \mathrm{C}\right)$ did not improve the yield of compound $\mathbf{3 0}$. The high sensitivity of the oxolane ring of compound 21 to oxidants was responsible for the low yields obtained in some oxidations.

Allylic oxidation of trans-anti-cis isomer 25 with sodium chromate afforded a very low yield (6%) of enone 31 and a complex mixture of polar products. However, with the complex chromium trioxide-dimethylpyrazole a 53% yield of enone 31 was obtained. No epoxide was found this time.

The second target, compound 36, was obtained in three steps from the antrostene 22. Oxidative cleavage of the compound 23 exocyclic double bond carried out with ruthenium tetraoxide, generated 'in situ' from ruthenium dioxide and sodium periodate, ${ }^{10}$ gave the keto ether $32(36 \%)$ and the diketone 33 (34%). The fast rate of oxidation at the α-carbon to the oxygen in the oxolane ring was a drawback in obtaining high yields of the desired products by this simple method. Ozonolysis of compound $\mathbf{2 3}$ afforded only keto ether $\mathbf{3 2}$ in 85% yield.
Regioselective α-acetoxylation of compound $\mathbf{3 2}$ was achieved with LTA 11 at room temperature in benzene to give a $14: 1$ mixture of epimers 35 and 35 a in 60% yield.
Treatment of α-acetate 35 with potassium hydroxide in ethanol-water under reflux ${ }^{12}$ for 3 h , the last step in the sequence, afforded the target compound $\mathbf{3 6}$ and two epimeric hydroxy ketones 37 and 38, in 5:2:1 proportions and 70% yield.

23

36
37
38

The described three-step sequence was applied to the trans-anti-cis androstene 27. Oxidative cleavage of the double bond was carried out with potassium permanganate-dicyclohexyl18 -crown- 6^{13} in a benzene-water mixture over 95 h to give the 4 -oxo androstane 39 in 65% yield. The easy epimerization of $\mathrm{C}-5 \alpha \longleftrightarrow \mathrm{C}-5 \beta$ of the cleavage product and the conformational change of the molecule must be promoted by the release of the 1,3-diaxial interaction observed in 5α isomer 39a.

Treatment of ketone 39 with LTA in refluxing benzene regioselectively afforded a $1: 1$ mixture of acyl acyloins $\mathbf{4 0}$ and 40a in 68% yield. The lack of stereoselectivity in this case must be due to steric requirements; both faces of the enolized ring A of substrate 39 showed an axial substituent.

The last step in the sequence carried out with potassium hydroxide in ethanol-water ${ }^{12}$ converted the mixture of acyloins 40 and 40a into the single hydroxy ketone 41, in almost quantitative yield. The result obtained in the latter reaction is coherent with the higher thermodynamic stability of the 5β isomer 41 as compared with that of the potential isomer 41a.

$(8 \beta, 14 \alpha)$

$(8 \alpha, 14 \beta)$

$(8 \alpha, 14 \beta)$

Experimental

General.-Mps were determined on a Kofler hot-stage apparatus and are not corrected. IR spectra were recorded on a Beckman 33-IR spectrophotometer, for film samples. The ${ }^{1} \mathrm{H}$ NMR (200 MHz) and ${ }^{13} \mathrm{C}$ NMR (50 MHz) spectra were recorded on a Bruker WP-200-SY spectrometer. Spectra were measured in deuteriochloroform. Chemical shifts are given in ppm downfield from tetramethylsilane. Chemical shifts and coupling constants were obtained from a first-order analysis of the spectra; J values are given in Hz . Optical rotations were measured on a digital Perkin-Elmer 241 polarimeter in a 1 -dm cell, and are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}{ }^{2} \mathrm{~g}^{-1}$. Mass spectra were measured on a V.G. TS-250 apparatus. Microanalyses were performed using a Carlo Erba 1106 elemental analyser.

Solvents were distilled before use and were dried, as necessary, by literature procedures. Work-up of solutions involved evaporation under reduced pressure at below $40^{\circ} \mathrm{C}$. Reactions were carried out under nitrogen. Silica gel for column chromatography refers to Merck Kieselgel 60.

Hydroboration of Methyl Sandaracopimarate 7.—Method (a): With diborane generated in situ. To a solution of compound 7 ($21 \mathrm{~g}, 66.4 \mathrm{mmol}$) in diglyme ($55 \mathrm{~cm}^{3}$) was added first a solution of sodium boranuide ($5.8 \mathrm{~g}, 154 \mathrm{mmol}$) in diglyme ($110 \mathrm{~cm}^{3}$) and then, dropwise, boron trifluoride ($27 \mathrm{~g}, 192 \mathrm{mmol}$) in diglyme ($27 \mathrm{~cm}^{3}$). The mixture was stirred for 3 h at room temperature after which was added gradually at $0^{\circ} \mathrm{C}$, ice-water $\left(13 \mathrm{~cm}^{3}\right), 3 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aq. $\mathrm{NaOH}\left(66 \mathrm{~cm}^{3}\right)$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(66$ cm^{3}). After the reaction mixture had been stirred for 1 h it was left overnight at room temperature. Then it was poured into ice-water $\left(1 \mathrm{dm}^{3}\right)$ and extracted with diethyl ether. The extract was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The crude mixture was chromatographed on silica gel (350 g). With hexane-diethyl ether ($1: 1$) as eluent a mixture of monohydroxylated compounds 8 and $9(5.1 \mathrm{~g}, 23 \%)$ was obtained.
With hexane-diethyl ether ($1: 3$) as eluent, a mixture of compounds $\mathbf{1 0}$ and $\mathbf{1 1}$ was given in the ratio $\sim 30: 70(13.1 \mathrm{~g}$, 56%). Crystallization from hexane-diethyl ether gave methyl $14 \alpha, 16$-dihydroxy-8 α-isopimarate 11, mp $145-146^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}$ $+28.6\left(c 0.5, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3300,1740$ and $1255 ; \delta_{\mathrm{H}} 1.06$ $(6 \mathrm{H}, \mathrm{s}), 1.19(3 \mathrm{H}, \mathrm{s}), 3.54(1 \mathrm{H}, \mathrm{d}, J 12), 3.67(3 \mathrm{H}, \mathrm{s})$ and 3.70 ($2 \mathrm{H}, \mathrm{m}$) ; $\delta_{\mathrm{C}} 16.84$ (C-19), 17.90 (C-11), 19.27 (C-20), 19.94 (C-6), 21.07 (C-2), 26.32 (C-17), 26.32 (C-12), 36.20 (C-15), 36.79 (C-3), 37.85 (C-8), 37.87 (C-10), 38.57 (C-7), 38.73 (C-13), 39.86 (C-1), 47.62 (C-4), 49.76 (C-9), 50.05 (C-5), 51.57 (OMe), 58.60 (C-16), 75.26 (C-14) and $179.50(\mathrm{C}-18)$ (Found: $\mathrm{C}, 71.6$; H, $10.2 \% ; \mathrm{M}^{+}, 352 . \mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{4}$ requires $\mathrm{C}, 71.59 ; \mathrm{H}, 10.23 \%$; M, 352). Concentration of the mother liquors gave methyl $14 \beta, 16$ dihydroxyisopimarate $10,[\alpha]_{\mathrm{D}}^{20}-13.4\left(c 1.6, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ 3300,1735 and 1245 ; $\delta_{\mathrm{H}} 0.88(6 \mathrm{H}, \mathrm{s}), 1.18(3 \mathrm{H}, \mathrm{s}), 2.94(1 \mathrm{H}, \mathrm{d}, J$ 10), $3.62(3 \mathrm{H}, \mathrm{s})$ and $3.69(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 14.47(\mathrm{C}-20), 15.52(\mathrm{C}-17)$, 16.58 (C-19), 18.03 (C-11), 19.38 (C-2), 23.90 (C-6), 23.90 (C-12), 31.02 (C-7), 36.14 (C-10), 36.88 (C-15), 37.85 (C-13), 38.08 (C-3), 38.08 (C-8), 46.41 (C-1), 47.52 (C-4), 49.54 (C-5), 51.68 (OMe), 54.42 (C-9), $58.25(\mathrm{C}-16), 81.43(\mathrm{C}-14)$ and $179.32(\mathrm{C}-18)$ (Found: C, $71.6 ;$ H, 10.2\%; $\mathrm{M}^{+}, 352$).
With diethyl ether as eluent, a mixture of the triols 12 and 13 ($3.0 \mathrm{~g}, 14 \%$) was obtained.

Method (b): With a solution of borane in tetrahydrofuran. To a stirred solution of compound $7(5.48 \mathrm{~g}, 17.4 \mathrm{mmol})$ in THF (25 cm^{3}) at $0^{\circ} \mathrm{C}$ was added dropwise a solution of borane in THF $\left(104 \mathrm{~cm}^{3} ; 1 \mathrm{~mol} \mathrm{dm}^{-3}\right)$. The mixture was then stirred at $0^{\circ} \mathrm{C}$ for 1 h and at room temperature overnight after which were added successively to the reaction mixture water ($15 \mathrm{~cm}^{3}$), $3 \mathrm{~mol} \mathrm{dm}^{-3}$ aq. $\mathrm{NaOH}\left(20 \mathrm{~cm}^{3}\right)$ and, at $0^{\circ} \mathrm{C}, 30 \% \mathrm{H}_{2} \mathrm{O}_{2}\left(20 \mathrm{~cm}^{3}\right)$. The mixture was heated at $50^{\circ} \mathrm{C}$ for 1 h , after which it was cooled at room temperature and extracted with diethyl ether. The extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The crude mixture was chromatographed on silica gel (100 g). With hexane-diethyl ether $(3: 1)$ as eluent, a mixture of monohydroxylated compounds 8 and $9(1.43 \mathrm{~g}, 24 \%)$ was obtained.
With hexane-diethyl ether $(1: 1)$ as eluent, a mixture of the diols 10 and 11 ($4.3 \mathrm{~g}, 70 \%$) was obtained.
With diethyl ether as eluent, a mixture of the triols 12 and 13 ($0.2 \mathrm{~g}, 4 \%$) was obtained.

Methyl 4β-Methyl-15-oxaandrostane-4 α-carboxylate 14.-To a solution of compound $10(8.11 \mathrm{~g}, 23.0 \mathrm{mmol})$ in benzene (811 cm^{3}) was added PTSA ($0.81 \mathrm{~g}, 4.22 \mathrm{mmol}$). The mixture was heated under reflux for 40 h after which it was cooled to room temperature and washed successively with saturated aq. sodium hydrogen carbonate and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give the ester $14(7.70 \mathrm{~g}, 100 \%)$, mp $85-86^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}-8.7$ (c $\left.1.2, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 1715$ and $1235 ; \delta_{\mathrm{H}} 0.81(3 \mathrm{H}, \mathrm{s}), 0.90(3$ $\mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}, \mathrm{s}), 2.71(1 \mathrm{H}, \mathrm{d}, J 10.7), 3.62(3 \mathrm{H}, \mathrm{s})$ and $3.83(2$ $\mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 14.62(\mathrm{C}-19), 16.60\left(\mathrm{CH}_{3}, 4 \beta\right), 17.49(\mathrm{C}-18), 18.12(\mathrm{C}-$ 11), 19.96 (C-6), 23.70 (C-2), 31.07 (C-12), 34.52 (C-17), 35.42 (C-8), 36.34 (C-10), 36.93 (C-3), 38.34 (C-1), 39.88 (C-7), 40.07
(C-13), 47.62 (C-4), 50.09 (C-5), 51.69 (OMe), 54.60 (C-9), 65.48 (C-16), $89.78(\mathrm{C}-14)$ and $179.18\left(\mathrm{CO}_{2} \mathrm{H}\right)$ (Found: C, $75.5 ; \mathrm{H}$, $10.2 \% ; \mathrm{M}^{+}, 334 . \mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.45, \mathrm{H}, 10.18 \% ; \mathrm{M}$, 334).

Methyl 4β-Methyl-15-oxa- $8 \alpha, 14 \beta$-androstane- 4α-carboxylate 15.-To a solution of the diol $11(8.11 \mathrm{~g}, 23.0 \mathrm{mmol})$ in benzene ($811 \mathrm{~cm}^{3}$) was added PTSA ($0.81 \mathrm{~g}, 4.22 \mathrm{mmol}$). The mixture was heated under reflux for 40 h after which it was cooled to room temperature and washed successively with saturated aq. sodium hydrogen carbonate and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give the title compound $15(7.70 \mathrm{~g}, 100 \%)$, mp $179{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+23.4\left(c 1.7, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 1715$ and 1235 ; $\delta_{\mathrm{H}} 0.94(3 \mathrm{H}, \mathrm{s}), 1.08(3 \mathrm{H}, \mathrm{s}), 1.18(3 \mathrm{H}, \mathrm{s}), 3.56(1 \mathrm{H}, \mathrm{d}, J 10)$, $3.65(3 \mathrm{H}, \mathrm{s})$ and $3.76(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 16.93\left(\mathrm{CH}_{3}, 4 \beta\right), 17.87(\mathrm{C}-19)$, 17.87 (C-11), 20.00 (C-6), 21.05 (C-2), 26.58 (C-12), 27.19 (C18), 33.08 (C-17), 37.02 (C-3), 37.70 (C-8), 37.70 (C-10), 39.54 (C-1), 39.73 (C-7), 40.55 (C-13), 47.49 (C-4), 48.43 (C-9), 49.44 $(\mathrm{C}-5), 51.82(\mathrm{OMe}), 64.62(\mathrm{C}-16), 84.04(\mathrm{C}-14)$ and 179.35 $\left(\mathrm{CO}_{2} \mathrm{H}\right)$ (Found: C, $75.5 ; \mathrm{H}, 10.2 \% ; \mathrm{M}^{+}, 334$).

Methyl 14 α-Hydroxy-16-triphenylmethoxy-8 α-isopimarate

 16.-To a solution of the diol $11(800 \mathrm{mg}, 2.3 \mathrm{mmol})$ in DMF $\left(10 \mathrm{~cm}^{3}\right)$ were added successively triethylamine $\left(0.56 \mathrm{~cm}^{3}, 4.0\right.$ mmol), 4-dimethylpyridine ($21 \mathrm{mg}, 0.2 \mathrm{mmol}$) and triphenylmethyl chloride ($1.26 \mathrm{~g}, 4.5 \mathrm{mmol}$); the reaction mixture was stirred at room temperature for 2 h after which was added a further portion of triphenylmethyl chloride $(1.26 \mathrm{mg}, 4.5$ mmol); after three such treatments the reaction mixture was stirred for 1 h and extracted with dichloromethane. The extract was washed successively with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The crude mixture was chromatographed on silica gel.With hexane-diethyl ether ($70: 30$) as eluent, compound 16 $(1.07 \mathrm{~g}, 78 \%)$ was obtained; $[\alpha]_{\mathrm{D}}^{20}+37.4$ (c $\left.1.0, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }} / \mathrm{cm}^{-1} 3400,3110,3050,1735,770$ and $710 ; \delta_{\mathrm{H}} 0.74(3 \mathrm{H}, \mathrm{s})$, $0.95(3 \mathrm{H}, \mathrm{s}), 1.11(3 \mathrm{H}, \mathrm{s}), 3.58(3 \mathrm{H}, \mathrm{s})$ and $7.16-7.32(15 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}} 16.85(\mathrm{C}-19), 17.97(\mathrm{C}-11), 19.32(\mathrm{C}-20), 20.13$ (C-6), 21.17 (C-2), 26.50(C-12), 26.50(C-17), 31.98 (C-7), 36.94 (C-15), 36.99 (C-10), 37.69 (C-3), 38.12 (C-8), 38.62 (C-13), 39.96 (C-1), 47.67 (C-4), 49.80 (C-9), 50.12 (C-5), 51.71 (OMe), 60.76 (C-16), 75.91 (C-14), 87.56 (C-benzyl), 126.93 (Ar), 127.76 (Ar), 128.57 (Ar), 143.95 (Ar) and 179.42 (C-18) (Found: C, 80.8; H, 8.4\%; $\mathrm{M}^{+}, 594 . \mathrm{C}_{40} \mathrm{H}_{50} \mathrm{O}_{4}$ requires $\mathrm{C}, 80.81 ; \mathrm{H}, 8.42 \% ; \mathrm{M}, 594$).

Methyl 14-Oxo-16-triphenylmethoxy-8 α-isopimarate 17.-To a stirred solution of pyridine ($2.9 \mathrm{~cm}^{3}$) in dichloromethane $\left(50 \mathrm{~cm}^{3}\right)$ was added $\mathrm{CrO}_{3}(2.02 \mathrm{~g}, 20.2 \mathrm{mmol})$. After 15 min compound $16(1.98 \mathrm{~g}, 3.3 \mathrm{mmol})$ was added in one portion and the reaction mixture was stirred for 30 min . The mixture was filtered, the filtrate was evaporated, the residue was dissolved in diethyl ether, and the solution was washed successively with 6% hydrochloric acid, 5% aq. sodium hydrogen carbonate and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The crude mixture was chromatographed on silica gel. Elution with hexane-diethyl ether ($90: 10$) gave compound $17(1.6 \mathrm{~g}, 82 \%), \mathrm{mp} 151-152{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}+38.0\left(c 1.3, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{1} 3030,3060,1725,1710$, 730 and $705 ; \delta_{\mathrm{H}} 0.61(3 \mathrm{H}, \mathrm{s}), 0.87(3 \mathrm{H}, \mathrm{s}), 1.05(3 \mathrm{H}, \mathrm{s}), 3.55(3 \mathrm{H}$, s) and 7.15-7.32 ($15 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}} 15.77(\mathrm{C}-20), 16.84(\mathrm{C}-19), 17.60$ (C-11), 19.21 (C-2), 21.64 (C-6), 22.20(C-17), 24.27 (C-12), 35.43 (C-7), 36.95 (C-3), 38.09 (C-10), 38.91 (C-15), 40.56 (C-1), 43.51 (C-9), 46.38 (C-13), 47.24 (C-4), 49.28 (C-5), 51.11 (C-8), 51.76 (OMe), 59.97 (C-16), 87.02 (C-benzyl), 126.85 (Ar), 127.67 (Ar), 128.59 (Ar), 144.15 (Ar), $179.23(\mathrm{C}-18)$ and 218.98 (C-14) (Found: C, 81.1; H, 8.1\%; M^{+}, 592. $\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{O}_{4}$ requires C, 81.08 ; H, 8.11\%; M, 592).

Methyl 14-Oxo-16-(triphenylmethyoxy)isopimarate 17a.-A solution of sodium methoxide ($336 \mathrm{mg}, 6.2 \mathrm{mmol}$) in methanol
$\left(4 \mathrm{~cm}^{3}\right)$ was added to a solution of compound $17(1.47 \mathrm{~g}, 2.5$ mmol) in methanol ($30 \mathrm{~cm}^{3}$); the mixture was heated under reflux for 1 h after which it was cooled to room temperature and evaporated; the residue was dissolved in water, the aqueous solution was extracted with diethyl ether, and the extract was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give compound $17 \mathbf{a}(1.47 \mathrm{~g}, 100 \%),[\alpha]_{\mathrm{D}}^{20}-14.2\left(c 1.5, \mathrm{CHCl}_{3}\right)$; $v_{\max } / \mathrm{cm}^{-1} 3060,3020,1730,1700,1250,1070,760$ and $705 ; \delta_{\mathrm{H}}$ $0.85(3 \mathrm{H}, \mathrm{s}), 0.95(3 \mathrm{H}, \mathrm{s}), 1.07(3 \mathrm{H}, \mathrm{s}), 3.55(3 \mathrm{H}, \mathrm{s})$ and $7.15-7.38$ ($15 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}} 14.01(\mathrm{C}-20), 16.66(\mathrm{C}-19), 18.04(\mathrm{C}-11), 19.52$ (C-2), 23.26 (C-6), 23.27 (C-17), 26.44 (C-12), 36.71 (C-7), 36.86 (C-10), 36.95 (C-3), 37.76 (C-15), $38.10(\mathrm{C}-1), 44.72$ (C-9), 46.43 (C-13), 47.38 (C-4), 48.77 (C-5), 51.66 (OMe), 56.70 (C-8), 60.27 (C-16), 86.40 (C-benzyl), 126.63 (Ar), 127.51 (Ar), 128.66 (Ar), 144.42 (Ar), 178.78 (C-18) and 215.73 (C-14) (Found: C, $81.1 ; \mathrm{H}, 8.1 \% ; \mathrm{M}^{+}, 592$).

Methyl 14ß-Hydroxy-16-(triphenylmethoxy)isopimarate 18. -To a stirred solution of the ketone $17 \mathrm{a}(2.0 \mathrm{~g}, 3.4 \mathrm{mmol})$ in methanol ($75 \mathrm{~cm}^{3}$) was added a solution of sodium boranuide $(128 \mathrm{mg}, 3.4 \mathrm{mmol})$ in methanol $\left(12 \mathrm{~cm}^{3}\right)$. After 30 min the reaction mixture was evaporated, the residue was dissolved in water, and the aqueous solution was extracted with diethyl ether. The extract was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The crude mixture was chromatographed on silica gel (50 g). Elution with hexane-diethyl ether ($90: 10$) gave methyl 14α-hydroxy-16-(triphenylmethoxy)isopimarate 18a (565 $\mathrm{mg}, 28 \%$), mp $199-200^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}-1.7\left(c 0.8, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ $3500,3080,3050,1710,1205,1045,750$ and $695 ; \delta_{\mathrm{H}} 0.55(3 \mathrm{H}, \mathrm{s})$, $0.74(3 \mathrm{H}, \mathrm{s}), 1.07(3 \mathrm{H}, \mathrm{s}), 2.96\left(1 \mathrm{H}, \mathrm{s}, w_{\mathrm{h} 1 / 2} 4.5 \mathrm{~Hz}\right), 3.53(3 \mathrm{H}$, s) and $7.15-7.34(15 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 14.76(\mathrm{C}-20), 17.47(\mathrm{C}-19), 18.86$ (C-11), 20.32 (C-2), $21.50(\mathrm{C}-17), 24.79$ (C-6), 30.68 (C-12), 33.48 (C-7), 36.08 (C-8), 36.67 (C-10), 37.39 (C-13), 37.53 (C15), 38.82 (C-3), 41.17 (C-1), 48.17 (C-4), 48.34 (C-9), 49.69 (C5), 52.16 (OMe), 60.60 (C-16), 76.00 (C-14), 88.12 (C-benzyl), 127.51 (Ar), 128.35 (Ar), 129.06 (Ar), 144.49 (Ar) and 179.73 (C-18) (Found: C, $80.8 ; \mathrm{H}, 8.4 \% ; \mathrm{M}^{+}, 594 . \mathrm{C}_{40} \mathrm{H}_{50} \mathrm{O}_{4}$ requires C, 80.81; H, 8.42\%; M, 594).

Elution with hexane-diethyl ether $(85: 15)$ gave compound 18 $(1.31 \mathrm{~g}, 65 \%), \operatorname{mp~} 188-189^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+13.3\left(c 1.3, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }} / \mathrm{cm}^{-1} 3420,3080,3020,1720,1245,1065,750$ and $700 ; \delta_{\mathrm{H}}$ $0.64(3 \mathrm{H}, \mathrm{s}), 0.76(3 \mathrm{H}, \mathrm{s}), 1.07(3 \mathrm{H}, \mathrm{s}), 2.83(1 \mathrm{H}, \mathrm{d}, J 9.5), 3.56$ ($3 \mathrm{H}, \mathrm{s}$) and $7.16-7.32(15 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 14.54(\mathrm{C}-20), 16.70(\mathrm{C}-19)$, 16.99 (C-11), 16.99 (C-17), 18.15 (C-6), 19.42 (C-2), 24.01 (C-12), 36.28 (C-10), 36.88 (C-7), 37.04 (C-1 5), 37.55 (C-8), 37.96 (C-3), 38.24 (C-13), 42.55 (C-1), 47.62 (C-4), 49.78 (C-5), 51.87 (OMe), 54.58 (C-9), 60.30 (C-16), 80.78 (C-14), 87.58 (C-benzyl), 126.90 (Ar), 127.74 (Ar), 128.83 (Ar), 144.09 (Ar) and 179.29 (C-18) (Found: C, 80.8; H, 8.4\%; $\mathbf{M}^{+}, 594$).

Treatment of Compound 18 with Toluene-p-sulfonic Acid.To a solution of compound $18(1.6 \mathrm{~g}, 2.7 \mathrm{mmol})$ in benzene $(160$ cm^{3}) was added PTSA ($160 \mathrm{mg}, 0.8 \mathrm{mmol}$). The mixture was heated under reflux for 29 h after which it was cooled to room temperature and washed successively with saturated aq. sodium hydrogen carbonate and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give compound $14(0.90 \mathrm{~g}, 100 \%)$.

4 β-Methyl-15-oxaandrostane-4 α-carboxylic Acid 19.-.A solution of $\mathrm{KOH}(1.92 \mathrm{~g}, 34.2 \mathrm{mmol})$ in ethylene glycol ($39 \mathrm{~cm}^{3}$) was added to the ester $14(4.60 \mathrm{~g}, 13.7 \mathrm{mmol})$. The mixture was heated under reflux for 21 h after which it was cooled to room temperature. The solution was acidified with $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ hydrochloric acid and extracted with diethyl ether. The extract was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give the acid $19(4.40 \mathrm{~g}, 99 \%), \operatorname{mp} 190-191^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+4.5(c 1.4$, $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3200,1700,1260$ and $1140 ; \delta_{\mathrm{H}} 0.84(3 \mathrm{H}, \mathrm{s})$, $0.91(3 \mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}, \mathrm{s}), 2.84(1 \mathrm{H}, \mathrm{d}, J 10.7)$ and $3.87(2 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}} 14.56(\mathrm{C}-19), 16.41\left(\mathrm{CH}_{3}, 4 \beta\right), 17.45(\mathrm{C}-18), 18.08(\mathrm{C}-11)$,
19.92 (C-6), 23.34 (C-2), 30.84 (C-12), 34.54 (C-17), 35.35 (C-8), 36.28 (C-3), 36.62 (C-10), 38.41 (C-1), 39.73 (C-13), 40.02 (C-7), 47.19 (C-4), 50.06 (C-5), 54.64 (C-9), 65.43 (C-16), 89.81 (C-14) and $183.09\left(\mathrm{CO}_{2} \mathrm{H}\right)$ (Found: $\mathrm{C}, 75.0 ; \mathrm{H}, 10.0 \% ; \mathrm{M}^{+}, 320$. $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.00 ; \mathrm{H}, 10.00 \% ; \mathrm{M}, 320$).
4β-Methyl-15-oxa-8 $\alpha, 14 \beta$-androstane- 4α-carboxylic Acid 20. -A solution of $\mathrm{KOH}(2.38 \mathrm{~g}, 42.5 \mathrm{mmol})$ in ethylene glycol ($48 \mathrm{~cm}^{3}$) was added to the ester $15(5.7 \mathrm{~g}, 17 \mathrm{mmol})$. The mixture was heated under reflux for 17 h after which it was cooled to room temperature. The solution was acidified with $2 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid and extracted with diethyl ether. The extract was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give the acid $20(5.36 \mathrm{~g}, 98 \%)$, mp $198-199^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+20.2(c 0.8$, $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3200,1710$ and $1285 ; \delta_{\mathrm{H}} 0.95(3 \mathrm{H}, \mathrm{s}), 1.07(3$ $\mathrm{H}, \mathrm{s}), 1.18(3 \mathrm{H}, \mathrm{s}), 3.60(1 \mathrm{H}, \mathrm{d}, J 10)$ and $3.75(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 16.66$ $\left(\mathrm{CH}_{3}, 4 \beta\right), 17.78(\mathrm{C}-11), 17.89(\mathrm{C}-19), 19.97(\mathrm{C}-6), 20.99(\mathrm{C}-2)$, 26.54 (C-12), 27.17 (C-18), 32.98 (C-17), 36.94 (C-8), 37.02 (C3), $37.57(\mathrm{C}-10), 39.42(\mathrm{C}-1), 39.46(\mathrm{C}-7), 40.52(\mathrm{C}-13), 47.15$ (C-4), 48.41 (C-9), 49.12 (C-5), 64.56 (C-16), $84.05(\mathrm{C}-14)$ and $184.65\left(\mathrm{CO}_{2} \mathrm{H}\right)$ (Found: C, $75.0 ; \mathrm{H}, 10.0 \% ; \mathrm{M}^{+}, 320$).

Decarboxylation of the Acid 19.-LTA (9.96 g, 22.5 mmol) was added to a stirred solution of the acid $19(5.3 \mathrm{~g}, 16.7 \mathrm{mmol})$ in pyridine ($10 \mathrm{~cm}^{3}$)-benzene ($440 \mathrm{~cm}^{3}$). The mixture was heated under reflux for 3.5 h after which it was cooled to room temperature. The reaction mixture was washed successively with $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ hydrochloric acid, 5% aq. sodium hydrogen carbonate, and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and chromatographed. Elution with hexane-diethyl ether (96:4) gave a mixture of the olefins 21,22 and $23(2.40 \mathrm{~g}, 66 \%)$ in the proportions $\sim 28: 41: 31$ and an acetoxy compound $24(1.10 \mathrm{~g}$, $24 \%),[\alpha]_{\mathrm{D}}^{20}-32.1\left(c 0.8, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 1750,1265,1070$ and $1030 ; \delta_{\mathrm{H}} 0.83(3 \mathrm{H}, \mathrm{s}), 0.93(3 \mathrm{H}, \mathrm{s}), 1.43(3 \mathrm{H}, \mathrm{s}), 1.90(3 \mathrm{H}$, s), $2.71(1 \mathrm{H}, \mathrm{m})$ and $3.82(2 \mathrm{H}, \mathrm{m})$ (Found: C, $75.5 ; \mathrm{H}, 10.2 \%$; $\mathrm{M}^{+}, 334 . \mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.45 ; \mathrm{H}, 10.18 \% ; \mathrm{M}, 334$).

The olefinic mixture was rechromatographed on silica gel$\mathrm{AgNO}_{3}(80: 20 ; 60 \mathrm{~g})$ with hexane-diethyl ether $(98: 2)$ as eluent to give: 4-methyl-15-oxaandrost-4-ene $21(672 \mathrm{mg}, 18.5 \%),[\alpha]_{\mathrm{D}}^{20}$ $+70.0\left(c 0.8, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 2920,1460$ and $1380 ; \delta_{\mathrm{H}} 0.84$ $(3 \mathrm{H}, \mathrm{s}), 0.99(3 \mathrm{H}, \mathrm{s}), 1.56(3 \mathrm{H}, \mathrm{s}), 2.69(1 \mathrm{H}, \mathrm{d}, J 10.5)$ and 3.84 ($2 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}} 17.30(\mathrm{C}-18), 19.00(\mathrm{C}-11), 19.33$ ($4-\mathrm{Me}$), 19.38 (C-19), 20.91 (C-6), 24.36 (C-2), 30.97 (C-12), 32.66 (C-3), 34.55 (C-17), $35.73(\mathrm{C}-8), 37.09(\mathrm{C}-10), 38.16(\mathrm{C}-1), 39.77(\mathrm{C}-7), 39.82$ (C-13), $52.62(\mathrm{C}-9), 65.10(\mathrm{C}-16), 89.33(\mathrm{C}-14), 123.30(\mathrm{C}-4)$ and 136.00 (C-5) (Found: C, 83.1; H, 10.9\%; $\mathrm{M}^{+}, 274 . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}$ requires $\mathrm{C}, 83.12 ; \mathrm{H}, 10.95 \% ; \mathrm{M}, 274$).

4-Methyl-15-oxaandrost-3-ene 22 ($984 \mathrm{mg}, 27 \%$), $v_{\text {max }} / \mathrm{cm}^{-1}$ 2950,1450 and $1380 ; \delta_{\mathrm{H}} 0.77(3 \mathrm{H}, \mathrm{s}), 0.82(3 \mathrm{H}, \mathrm{s}), 1.56(3 \mathrm{H}, \mathrm{s})$, $2.75(1 \mathrm{H}, \mathrm{d}, J 10.5), 3.81(2 \mathrm{H}, \mathrm{m})$ and $5.24(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 12.09$ (C-19), 17.52 (C-18), 20.60 (C-11), 21.14 (4-Me), 22.68 (C-6), 22.92 (C-20), $30.58(\mathrm{C}-12), 34.31$ (C-17), $35.27(\mathrm{C}-8), 37.17$ (C-10), 38.21 (C-1), 39.97 (C-7), 40.04 (C-13), 48.58 (C-5), 62.25 (C-16), $89.58(\mathrm{C}-14), 120.26(\mathrm{C}-3)$ and 134.52 (C-4) (Found: C, $83.1 ; \mathrm{H}, 11.0 \%$ M ${ }^{+}$, 274).

4-Methylidene-15-oxaandrostane 23 ($744 \mathrm{mg}, 20 \%$), $[\alpha]_{\mathrm{D}}^{20}$ $+46.8\left(c 0.7, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3100,1660,900$ and $860 ; \delta_{\mathrm{H}}$ $0.68(3 \mathrm{H}, \mathrm{s}), 0.80(3 \mathrm{H}, \mathrm{s}), 2.73(1 \mathrm{H}, \mathrm{d}, J 10.5), 3.77(2 \mathrm{H}, \mathrm{m})$, $4.41(1 \mathrm{H}, \mathrm{s})$ and $4.66(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 12.64(\mathrm{C}-19), 17.31(\mathrm{C}-18), 20.77$ (C-11), 23.34 (C-2), 23.42 (C-6), $29.86(\mathrm{C}-12), 34.50(\mathrm{C}-17), 35.15$ (C-8), 36.51 (C-3), 38.91 (C-1), 39.74 (C-7), 39.84 (C-10), 39.91 (C-13), 51.21 (C-5), 52.47 (C-9), 65.06 (C-16), 89.24 (C-14), $105.68\left(\mathrm{CH}_{2}=\right.$) and $150.08(\mathrm{C}-4)$ (Found: $\mathrm{C}, 83.1 ; \mathrm{H}, 10.9 \%$; $\mathrm{M}^{+}, 274$).

Pyrolysis of compound 24.-Compound 24 (1.10 g, 3.30 mmol) was heated at $220^{\circ} \mathrm{C}$, at 14 mmHg , for 15 min , after which it was cooled to room temperature and dissolved in
diethyl ether. The solution was washed successively with 5% aq. sodium hydrogen carbonate and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give a mixture of the olefins 21, 22 and 23 (860 $\mathrm{mg}, 95.4 \%$) in the proportions $\sim 39: 23: 38$, respectively.

Decarboxylation of the Acid 20.-LTA ($12.27 \mathrm{~g}, 27.7 \mathrm{mmol}$) was added to a stirred solution of the acid $20(5.36 \mathrm{~g}, 16.7 \mathrm{mmol})$ in pyridine ($13 \mathrm{~cm}^{3}$)-benzene ($558 \mathrm{~cm}^{3}$). The mixture was heated under reflux for 3.5 h after which it was cooled to room temperature and washed successively with $2 \mathrm{~mol}_{\mathrm{dm}}{ }^{-3}$ hydrochloric acid, 5% aq. sodium hydrogen carbonate and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and chromatographed. Elution with hexane-diethyl ether $(90: 10)$ gave a mixture of the olefins 25,26 and $27(3.0 \mathrm{~g}, 65 \%)$ in the proportions $\sim 22: 40: 38$, and an acetoxy compound $28(1.3 \mathrm{~g}, 23 \%),[\alpha]_{\mathrm{D}}^{20}$ $-5.0\left(c 1.2, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 1730$ and $1250 ; \delta_{\mathrm{H}} 0.90(3 \mathrm{H}, \mathrm{s})$, $1.08(3 \mathrm{H}, \mathrm{s}), 1.45(3 \mathrm{H}, \mathrm{s}), 1.91(3 \mathrm{H}, \mathrm{s})$ and $3.60(3 \mathrm{H}, \mathrm{m})$ (Found: C, $75.5 ; \mathrm{H}, 10.2 \% ; \mathrm{M}^{+}, 334 . \mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{3}$ requires C, 75.45 ; H, 10.18\%; M, 334).

The olefinic mixture was rechromatographed on silica gel$\mathrm{AgNO}_{3}(80: 20 ; 75 \mathrm{~g})$. Elution with hexane-diethyl ether (99.5:0.5) gave 4-methyl-15-oxa-8 $8,14 \beta$-androst-4-ene 25 (0.66 g , $14.4 \%),[\alpha]_{\mathrm{D}}^{20}+39.3\left(c 1.5, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 2950,1475$ and $1390 ; \delta_{\mathrm{H}} 1.00(3 \mathrm{H}, \mathrm{s}), 1.10(3 \mathrm{H}, \mathrm{s}), 1.57(3 \mathrm{H}, \mathrm{s}), 3.47(1 \mathrm{H}, \mathrm{d}, J$ $5.7)$ and $3.80(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 19.22(\mathrm{C}-11), 19.30(\mathrm{C}-19), 20.36(\mathrm{C}-6)$, 23.51 (C-2), 24.61 (4-Me), 24.81 (C-18), 24.87 (C-12), 32.37 (C-17), 33.67 (C-3), 36.55 (C-8), 37.30 (C-10), 39.14 (C-7), 39.62 (C-13), 40.99 (C-1), 43.67 (C-9), 64.85 (C-16), 86.30 (C-14), 124.63 (C-4) and 135.49 (C-5) (Found: C, 83.1; H, 11.0%; M^{+}, 274. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}$ requires $\mathrm{C}, 83.12 ; \mathrm{H}, 10.95 \%$; M, 274).

Hexane-diethyl ether (98:2) as eluent gave 4-methyl-15-oxa$8 \alpha, 14 \beta$-androst- 3 -ene $26(1.20 \mathrm{~g}, 26 \%)$, $[\alpha]_{\mathrm{D}}^{20}+19.5$ (c 0.9 , CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1} 2940,1450$ and $1370 ; \delta_{\mathrm{H}} 0.82(3 \mathrm{H}, \mathrm{s}), 1.09$ (3 $\mathrm{H}, \mathrm{s}), 1.60(3 \mathrm{H}, \mathrm{d}, J 1.6), 3.62(1 \mathrm{H}, \mathrm{d}, J 9), 3.81(2 \mathrm{H}, \mathrm{m})$ and 5.30 $(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 16.20(\mathrm{C}-19), 20.40(\mathrm{C}-6), 20.28$ (C-11), 21.39 ($4-\mathrm{Me}$), 22.81 (C-2), 26.44 (C-12), 26.51 (C-18), 32.79 (C-17), 35.85 (C-1), 36.09 (C-8), 36.42 (C-10), 39.33 (C-7), 40.12 (C-13), 44.70 (C-5), 47.25 (C-9), 64.54 (C-16), 85.13 (C-14), 120.59 (C-3) and 135.20 (C-4) (Found: $\mathrm{C}, 83.1 ; \mathrm{H}, 11.0 \% ; \mathrm{M}^{+}, 274 . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}$ requires C , 83.12; H, 10.95%; M, 274).

Hexane-diethyl ether (95:5) as eluent gave 4-methylidene-15-oxa-8 $8,14 \beta$-androstane 27 ($1.14 \mathrm{~g}, 25 \%$), $[\alpha]_{\mathrm{D}}^{20}+85.5$ (c 1.2, $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3080,1635,965$ and $875 ; \delta_{\mathrm{H}} 0.74(3 \mathrm{H}, \mathrm{s}), 1.07$ $(3 \mathrm{H}, \mathrm{s}), 3.63(1 \mathrm{H}, \mathrm{d}, J 10), 3.80(2 \mathrm{H}, \mathrm{m}), 4.47(1 \mathrm{H}, \mathrm{s})$ and 4.72 ($1 \mathrm{H}, \mathrm{s}$); $\delta_{\mathrm{C}} 17.01$ (C-19), 20.39 (C-11), 20.93 (C-6), 23.31 (C-2), 26.21 (C-12), 27.59 (C-18), 32.66 (C-17), 36.78 (C-3), 37.23 (C-8), 38.33 (C-1), 39.56 (C-10), 40.29 (C-7), 40.43 (C-13), 46.54 (C-9), $51.59(\mathrm{C}-5), 64.50(\mathrm{C}-16), 83.75(\mathrm{C}-14), 106.13\left(\mathrm{CH}_{2}=\right)$ and 150.11 (C-4) (Found: C, 83.1; H, 10.9%; $\mathrm{M}^{+}, 274 . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}$ requires C, $83.12 ; \mathrm{H}, 10.95 \%$; M, 274).

Pyrolysis of Compound 28.-Compound 28 ($1.3 \mathrm{~g}, 3.9 \mathrm{mmol}$) was heated at $220^{\circ} \mathrm{C}$ at 14 mmHg for 10 min after which it was cooled to room temperature and dissolved in diethyl ether. The solution was washed with 5% aq. sodium hydrogen carbonate and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give a mixture of the olefins 25,26 and 27 ($1.2 \mathrm{~g}, 92 \%$) in the proportions ~ 41:30:29.
Isomerization with Iodine.-A solution of the olefinic mixture $21-23(1.0 \mathrm{~g}, 3.60 \mathrm{mmol})$ in benzene ($100 \mathrm{~cm}^{3}$) containing a small amount of iodine (70 mg) was heated at $110^{\circ} \mathrm{C}$ for 30 min after which it was cooled to room temperature and washed successively with 40% aq. sodium hydrogen sulfite and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and chromatographed. Elution with hexane-diethyl ether ($95: 5$) gave compound 21 (987 mg , 99%).
4-Methyl-15-oxaandrost-4-en-3-one 30.-To a stirred suspension of $\mathrm{CrO}_{3}(4.04 \mathrm{~g}, 40.4 \mathrm{mmol})$ in dichloromethane (34
cm^{3}) at $-25^{\circ} \mathrm{C}$ was added 3,5 -dimethylpyrazole ($3.9 \mathrm{~g}, 40.4$ $\mathrm{mmol})$; after 15 min , compound $21(925 \mathrm{mg}, 3.4 \mathrm{mmol}$) was added. The mixture was stirred for 2 h , after which it was warmed to $0^{\circ} \mathrm{C}$ and $5 \mathrm{~mol} \mathrm{dm}^{-3}$ aq. $\mathrm{NaOH}\left(17 \mathrm{~cm}^{3}\right)$ was added. The mixture was stirred for 1 h after which it was diluted with dichloromethane ($10 \mathrm{~cm}^{3}$) and the two layers were separated. The organic layer was washed successively with $2 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The crude product was chromatographed on silica gel (25 g). Elution with hexane-diethyl ether ($95: 5$) gave $4 \alpha, 5 \alpha$ -epoxy- 4β-methyl-15-oxaandrostane 29 ($133 \mathrm{mg}, 14 \%$), mp $153-154^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+14.5\left(c 0.7, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 2960,1470$ and $1390 ; \delta_{\mathrm{H}} 0.82(3 \mathrm{H}, \mathrm{s}), 0.98(3 \mathrm{H}, \mathrm{s}), 1.31(3 \mathrm{H}, \mathrm{s}), 2.77(1 \mathrm{H}, \mathrm{d}$, $J 10)$ and $3.80(2 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}} 11.28$ (C-19), 16.51 ($4-\mathrm{Me}$), 17.32 (C-18), 20.75 (C-11), 25.44 (C-2), 26.95 (C-6), 29.67 (C-12), 32.94 (C-3), 34.34 (C-17), 34.91 (C-8), 37.11 (C-10), 39.76 (C-7), 40.03 (C-1), 40.26 (C-13), 49.01 (C-9), 65.18 (C-4), 65.54 (C-16), 72.53 (C-5) and 88.79 (C-14) (Found: C, 78.6; H, 10.35\%; $\mathbf{M}^{+}, 290$. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.62 ; \mathrm{H}, 10.34 \% ; \mathrm{M}, 290$).

Hexane-diethyl ether $(90: 10)$ as eluent gave 4-methyl-15-oxaandrost-4-en-3-one $30(498 \mathrm{mg}, 51 \%)$, mp 109-110 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}$ $+60.4\left(c 1.1, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 1670$ and $1615 ; \delta_{\mathrm{H}} 0.82(3 \mathrm{H}, \mathrm{s})$, $1.12(3 \mathrm{H}, \mathrm{s}), 1.69(3 \mathrm{H}, \mathrm{d}, J 1.4), 2.30(2 \mathrm{H}, \mathrm{m}), 2.68(1 \mathrm{H}, \mathrm{d}, J$ 10.6) and $3.83(2 \mathrm{H}, \mathrm{m})$; δ_{C}, see Table 2 (Found: C, $79.2 ; \mathrm{H}$, $9.7 \% ; \mathrm{M}^{+}, 288 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\left.\mathrm{C}, 79.17 ; \mathrm{H}, 9.72 \% ; \mathrm{M}, 288\right)$.

Isomerization with Iodine.-A solution of the olefinic mixture $\mathbf{2 5 - 2 7}(2.5 \mathrm{~g}, 9.1 \mathrm{mmol})$ in benzene ($250 \mathrm{~cm}^{3}$) containing a small amount of iodine (70 mg) was heated under reflux for 2.5 h after which it was cooled to room temperature and washed successively with 40% aq. sodium hydrogen sulfite and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and chromatographed. Elution with hexane-diethyl ether ($95: 5$) gave compound $25(2.0 \mathrm{~g}, 80 \%)$.

4-Methyl-15-oxa-8 $\alpha, 14 \beta$-androst-4-en-3-one 31.-To a stirred suspension of $\mathrm{CrO}_{3}(4.52 \mathrm{~g}, 45.2 \mathrm{mmol})$ in dichloromethane (38 cm^{3}) at $-25^{\circ} \mathrm{C}$ was added 3,5 -dimethylpyrazole ($4.34 \mathrm{~g}, 45.2$ $\mathrm{mmol})$; after 15 min compound $25(1.3 \mathrm{~g}, 4.7 \mathrm{mmol})$ was added. The mixture was stirred for 2 h after which it was warmed at $0^{\circ} \mathrm{C}$ and $5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aq. $\mathrm{NaOH}\left(19 \mathrm{~cm}^{3}\right)$ was added. The mixture was stirred for 1 h after which it was diluted with dichloromethane ($10 \mathrm{~cm}^{3}$) and the two layers were separated. The organic layer was washed successively with $2 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The crude product was chromatographed on silica gel (25 g), with hexane-diethyl ether $(85: 15$) as eluent, to give compound 31, $[\alpha]_{\mathrm{D}}^{20}+41.7\left(c 1.6, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 1670$ and $1625 ; \delta_{\mathrm{H}} 1.11(3 \mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}, \mathrm{s}), 1.70(3 \mathrm{H}, \mathrm{s}), 3.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 5.6) and $3.80(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}$, see Table 2 (Found: C, 79.2; H, 9.73\%; $\mathrm{M}^{+}, 288 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\mathrm{C}, 79.17 ; \mathrm{H}, 9.72 \% ; \mathrm{M}, 288$).

15-Oxaandrostan-4-one 32.-A mixture of the alkene 23 (690 $\mathrm{mg}, 2.5 \mathrm{mmol}), \mathrm{CCl}_{4}\left(5 \mathrm{~cm}^{3}\right)$, $\mathrm{MeCN}\left(5 \mathrm{~cm}^{3}\right)$, water $\left(7.7 \mathrm{~cm}^{3}\right)$, $\mathrm{NaIO}_{4}(2.21 \mathrm{~g}, 10.3 \mathrm{mmol})$ and $\mathrm{RuO}_{2}(7 \mathrm{mg}, 0.055 \mathrm{mmol})$ was stirred for 24 h at room temperature, after which it was extracted with dichloromethane. The extract was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and chromatographed. Elution with hexane-diethyl ether (75:25) gave compound 32 $(250 \mathrm{mg}, 36 \%), \mathrm{mp} 9{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+7.6\left(c 0.5, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1}$ $1720 ; \delta_{\mathrm{H}} 0.76(3 \mathrm{H}, \mathrm{s}), 0.83(3 \mathrm{H}, \mathrm{s}), 2.76(1 \mathrm{H}, \mathrm{d}, J 10)$ and $3.85(2$ $\mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 13.47$ (C-19), 17.31 (C-18), 19.63 (C-11), 20.86 (C-6), 22.33 (C-2), 28.76 (C-12), 34.29 (C-17), 34.91 (C-8), 37.43 (C-3), 39.65 (C-7), 39.93 (C-13), 40.78 (C-1), 42.07 (C-10), 52.17 (C-9), 58.72 (C-5), 65.27 (C-16), 89.03 (C-14) and 211.98 (C-4) (Found: C, $78.3 ; \mathrm{H}, 10.1 \% ; \mathrm{M}^{+}, 276 . \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2}$ requires C , 78.26 ; H, 10.14\%; M, 276).

Hexane-diethyl ether ($50: 50$) as eluent gave the acid 33 (266 $\mathrm{mg}, 34 \%$) which was methylated by addition of ethereal

Table $2{ }^{13}$ C Chemical shifts

	30	31	35	36	40	40a	41
C-1	35.12	36.58	32.36	34.93	41.54	42.46	42.40
C-2	33.56	34.16	27.91	31.79	23.62	27.96	114.98
C-3	198.28	186.73	75.98	193.26	74.54	72.66	144.68
C-4	128.11	128.91	207.31	139.10	207.22	207.34	198.43
C-5	162.65	164.71	54.57	141.39	55.46	55.46	50.63
C-6	26.93	23.68	20.86	22.42	23.00	23.97	23.11
C-7	39.67	41.39	39.90	40.11	29.20	29.46	32.36
C-8	35.29	35.37	34.80	35.35	35.54	35.12	35.69
C-9	52.16	43.22	52.22	52.39	39.91	41.23	41.01
C-10	38.82	38.59	42.94	37.79	38.89	38.35	38.24
C-11	20.46	20.19	19.11	20.56	18.61	17.97	17.50
C-12	30.16	26.31	28.57	29.70	26.60	27.03	28.07
C-13	39.99	39.96	39.60	39.88	39.08	39.45	38.41
C-14	89.07	86.61	88.89	89.24	86.25	86.99	86.87
C-16	65.61	65.26	65.26	65.72	64.64	64.59	64.52
C-17	34.31	33.63	34.20	34.44	33.50	33.78	33.74
C-18	17.33	25.01	17.26	- 17.35	26.00	23.52	24.62
C-19	17.56	21.16	12.98	17.14	23.97	22.76	22.75
4-Me	10.93	10.68					
$3-\mathrm{OCOMe}$			169.23		169.40	169.70	
3 -OCOMe			20.60		20.77	20.51	

diazomethane. Evaporation of the solvent afforded the ester 34, $\operatorname{mp} 93-94{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}-21.7\left(c 1.4, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 1760,1725$ and $1210 ; \delta_{\mathrm{H}} 0.65(3 \mathrm{H}, \mathrm{s}), 1.10(3 \mathrm{H}, \mathrm{s})$ and $3.49(3 \mathrm{H}, \mathrm{s})$ (Found: $\mathrm{C}, 71.25 ; \mathrm{H}, 8.75 \% ; \mathrm{M}^{+}, 320 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}$ requires $\mathrm{C}, 71.25 ; \mathrm{H}$, 8.75%; M, 320).

Ozonolysis of the Alkene 23.-A mixture of the alkene 23 $(175 \mathrm{mg}, 0.64 \mathrm{mmol})$ in methanol ($11 \mathrm{~cm}^{3}$) was exhaustively ozonolysed at $-78^{\circ} \mathrm{C}$. The solution was flushed with nitrogen for 30 min , before addition of dimethyl sulfide $\left(1 \mathrm{~cm}^{3}\right)$. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 2 h and at room temperature overnight. After concentration under reduced pressure, the residue was taken up in diethyl ether $\left(5 \mathrm{~cm}^{3}\right)$, and the organic phase was washed successively with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. Purification by silica gel [elution with hexane-diethyl ether (50:50)] gave the ketone 32 (150 mg , 85%).

4-Oxo-15-oxaandrostan- $3 \alpha-y l$ Acetate 35 .-LTA ($1.07 \mathrm{~g}, 2.4$ mmol) and boron trifluoride-diethyl ether $\left(0.87 \mathrm{~cm}^{3}\right)$ were added successively to a solution of the ketone 32 ($240 \mathrm{mg}, 0.9$ mmol) in benzene ($60 \mathrm{~cm}^{3}$), and the mixture was stirred at room temperature for 23 h after which it was washed successively with water and brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated. The crude product was chromatographed on silica gel, with hexanediethyl ether ($75: 25$), to give compound 35 ($171 \mathrm{mg}, 56 \%$), $[\alpha]_{\mathrm{D}}^{20}$ $+1.1\left(c 1.6, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{1} 1750,1725$ and $1235 ; \delta_{\mathrm{H}} 0.77$ (3 $\mathrm{H}, \mathrm{s}), 0.82(3 \mathrm{H}, \mathrm{s}), 2.12(3 \mathrm{H}, \mathrm{s}), 2.75(1 \mathrm{H}, \mathrm{d}, J 10), 3.85(2 \mathrm{H}, \mathrm{m})$ and $4.78(1 \mathrm{H}, \mathrm{t}, J 2)$; δ_{C}, see Table 2 (Found: C, $71.9 ; \mathrm{H}, 9.1 \%$, $\mathrm{M}^{+}, 334 . \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4}$ requires $\mathrm{C}, 71.85 ; \mathrm{H}, 8.98 \% ; \mathrm{M}, 334$).

Hexane-diethyl ether ($70: 30$) as eluent gave 4-oxo-15-oxaandrostan-3 β-yl-acetate 35 a ($12 \mathrm{mg}, 4 \%$), $\delta_{\mathrm{H}} 0.77(3 \mathrm{H}, \mathrm{s})$, $0.84(3 \mathrm{H}, \mathrm{s}), 2.11(3 \mathrm{H}, \mathrm{s}), 2.83(1 \mathrm{H}, \mathrm{d}, J 10), 3.86(2 \mathrm{H}, \mathrm{m})$ and $5.14\left(1 \mathrm{H}, \mathrm{dd}, J_{1} 2, J_{2} 8\right)$.

4-Hydroxy-15-oxaandrost-4-en-3-one 36.-To a mixture of aq. $\mathrm{KOH}\left(52 \mathrm{mg}, 0.9 \mathrm{mmol}\right.$ in $\left.0.17 \mathrm{~cm}^{3}\right)$ and ethanol $\left(1.1 \mathrm{~cm}^{3}\right)$ was added compound $35(86 \mathrm{mg}, 0.2 \mathrm{mmol})$; the mixture was heated under reflux for 3 h , after which it was cooled to room temperature and evaporated; the residue was dissolved in water and the aqueous solution was extracted with diethyl ether. The extract was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The crude product was chromatographed on silica gel. Elution with hexane-diethyl ether $(80: 20)$ gave the acyloin
$36(26 \mathrm{mg}, 45 \%), \mathrm{mp} 167^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+77.0\left(c 0.6, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }} / \mathrm{cm}^{-1} 3400,1670,1660,1645,1635$ and $1220 ; \delta_{\mathrm{H}} 0.90(3 \mathrm{H}, \mathrm{s})$, $1.20(3 \mathrm{H}, \mathrm{s}), 2.76(1 \mathrm{H}, \mathrm{d}, J 10), 3.88(2 \mathrm{H}, \mathrm{m})$ and $6.07(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}$, see Table 2 (Found: $\mathrm{C}, 74.5 ; \mathrm{H}, 8.95 \% ; \mathrm{M}^{+}, 290 . \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.48 ; \mathrm{H}, 8.96 \% ; \mathrm{M}, 290$).

Hexane-diethyl ether $(75: 25)$ as eluent gave 4β-hydroxy-15-oxaandrostan-3-one $37(10 \mathrm{mg}, 17 \%), \operatorname{mp} 185^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}-18.1(c$ $\left.0.8, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3360$ and $1720 ; \delta_{\mathrm{H}} 0.84(3 \mathrm{H}, \mathrm{s}), 1.06(3 \mathrm{H}$, s), $2.78(1 \mathrm{H}, \mathrm{d}, J 10), 2.90(1 \mathrm{H}, \mathrm{m})$ and $3.86(2 \mathrm{H}, \mathrm{m})$ (Found: C, $74.0 ; \mathrm{H}, 9.6 \% ; \mathrm{M}^{+}, 292 . \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 73.97 ; \mathrm{H}, 9.59 \%$; M, 292).

Hexane-diethyl ether ($70: 30$) as eluent gave 3α-hydroxy-15-oxaandrostan-4-one $38(5 \mathrm{mg}, 8.5 \%), v_{\text {max }} / \mathrm{cm}^{-1} 3380,1720$ and $1705 ; \delta_{\mathrm{H}} 0.75(3 \mathrm{H}, \mathrm{s}), 0.85(3 \mathrm{H}, \mathrm{s}), 2.71(1 \mathrm{H}, \mathrm{d}, J 10), 3.86(2 \mathrm{H}$, $\mathrm{m})$ and $4.12(1 \mathrm{H}, \mathrm{t}, J 10)$.

15-Oxa-5 $\beta, 8 \alpha, 14 \beta$-androstan-4-one 39.-Aq. dicyclohexyl-18-crown-6 $(0.14 \mathrm{~g}, 0.4 \mathrm{mmol})-\mathrm{KMnO}_{4}(1.55 \mathrm{~g}, 9.8 \mathrm{mmol})$ (in 12 cm^{3}) was added to a stirred solution of the alkene $27(1.04 \mathrm{~g}, 3.8$ mmol) in benzene $\left(56 \mathrm{~cm}^{3}\right)$. After 24 h , further aq. dicyclohexyl-18-crown-6 ($10 \mathrm{mg}, 0.02 \mathrm{mmol}$) and $\mathrm{KMnO}_{4}(200 \mathrm{mg}, 1.3$ mmol) (in $2 \mathrm{~cm}^{3}$) was added; after two such treatments the reaction mixture was stirred for 24 h after which an excess of sodium hydrogen sulfite was added and the filtrate was decanted, the aqueous layer was extracted with diethyl ether, and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and applied to short-column chromatography. Elution with hexane-diethyl ether $(75: 25)$ gave compound 39 $(679 \mathrm{mg}, 65 \%), \mathrm{mp} 129^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+23.3\left(c 0.7, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }} / \mathrm{cm}^{-1} 1720 ; \delta_{\mathrm{H}} 0.89(3 \mathrm{H}, \mathrm{s}), 1.08(3 \mathrm{H}, \mathrm{s}), 3.30(1 \mathrm{H}, \mathrm{d}, J 1.8)$ and $3.84(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 17.86(\mathrm{C}-11), 21.84(\mathrm{C}-6), 23.01(\mathrm{C}-19)$, 23.69 (C-18), 24.31 (C-2), $26.69(\mathrm{C}-7), 27.52(\mathrm{C}-12), 33.96(\mathrm{C}-$ 17), 35.24 (C-8), 36.38 (C-3), 38.54 (C-10), 39.27 (C-13), 41.77 (C-9), $42.65(\mathrm{C}-1), 56.06(\mathrm{C}-5), 64.80(\mathrm{C}-16), 87.32(\mathrm{C}-14)$ and 212.54 (C-4) (Found: C, 78.3; H, 10.1\%; $\mathbf{M}^{+}, 276 . \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.26 ; \mathrm{H}, 10.14 \% ; \mathrm{M}, 276$).

4-Oxo-15-oxa-5 $\beta, 8 \alpha, 14 \beta$-androstan- $3 \alpha-y l$ Acetate 40 and -3 β $y l$ Acetate $\mathbf{4 0 a}$.-LTA ($1.82 \mathrm{~g}, 4.1 \mathrm{mmol}$) and boron trifluoridediethyl ether $\left(1.48 \mathrm{~cm}^{3}\right)$ were added successively to a solution of the ketone $39(410 \mathrm{mg}, 1.5 \mathrm{mmol})$ in benzene $\left(100 \mathrm{~cm}^{3}\right)$. The mixture was stirred at room temperature for 17 h , after which it was washed successively with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The crude product was chromatographed on
silica gel. Elution with hexane-diethyl ether ($85: 15$) gave compound 40 ($170 \mathrm{mg}, 34 \%$); $[\alpha]_{\mathrm{D}}^{20}+36.7$ (c 0.7, CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1} 1760,1725$ and $1235 ; \delta_{\mathrm{H}} 0.96(3 \mathrm{H}, \mathrm{s}), 1.05(3 \mathrm{H}, \mathrm{s})$, $2.05(3 \mathrm{H}, \mathrm{s}), 3.35(1 \mathrm{H}, \mathrm{d}, J 4.8), 3.78(2 \mathrm{H}, \mathrm{m})$ and $5.02(1 \mathrm{H}$, $\mathrm{t}, J 7$); δ_{C}, see Table 2 (Found: C, $72.0 ; \mathrm{H}, 9.2 \% ; \mathrm{M}^{+}, 334$. $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4}$ requires C, $71.85 ; \mathrm{H}, 8.98 \% ; \mathrm{M}, 334$).

Hexane-diethyl ether ($80: 20$) as eluent gave compound 40a $(170 \mathrm{mg}, 34 \%), \mathrm{mp} 163{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}-9.4\left(c 1.0, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1}$ 1760,1730 and $1240 ; \delta_{\mathrm{H}} 0.83(3 \mathrm{H}, \mathrm{s}), 1.00(3 \mathrm{H}, \mathrm{s}), 2.05(3 \mathrm{H}, \mathrm{s})$, $3.23(1 \mathrm{H}, \mathrm{d}, J 1.8), 3.74(2 \mathrm{H}, \mathrm{m})$ and $5.50\left(1 \mathrm{H}, \mathrm{dd}, J_{1} 6, J_{2} 8\right) ; \delta_{\mathrm{C}}$, see Table 2 (Found: C, $71.9 ; \mathbf{H}, 9.0 \% ; \mathbf{M}^{+}, 334$).

3-Hydroxy-15-oxa-5 $\beta, 8 \alpha, 14 \beta$-androst-2-en-4-one 41.-To a mixture of aq. $\mathrm{KOH}\left(76 \mathrm{mg}, 1.3 \mathrm{mmol}\right.$ in $\left.0.28 \mathrm{~cm}^{3}\right)$ and ethanol $\left(1.4 \mathrm{~cm}^{3}\right)$ was added an isomeric mixture 40 and $40 \mathrm{a}(113 \mathrm{mg}$, 0.34 mmol); the reaction mixture was heated under reflux for 3 h , after which it was cooled to room temperature and evaporated; the residue was dissolved in water and the aqueous solution was extracted with diethyl ether. The extract was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give the acyloin $41(89 \mathrm{mg}, 94 \%),[\alpha]_{\mathrm{D}}^{20}-6.3\left(c 1.8, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ 3440,1685 and $1660 ; \delta_{\mathrm{H}} 0.93(3 \mathrm{H}, \mathrm{s}), 1.01(3 \mathrm{H}, \mathrm{s}), 3.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $1.8), 3.74(2 \mathrm{H}, \mathrm{m})$ and $5.82\left(1 \mathrm{H}, \mathrm{dd}, J_{1} 2, J_{2} 4\right)$; δ_{C}, see Table 2 (Found: C, 74.5 ; H, $8.95 \% ; \mathrm{M}^{+}, 290 . \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}$ requires C , 74.48 ; H, 8.96\%; M, 290).

References

1 J. Mann and B. Pietrzak, J. Chem. Soc., Perkin Trans. 1, 1983, 2681; D. A. Marsh, H. J. Brodie, W. Garrett, C.-H. Tsai-Morris and A. M. H. Brodie, J. Med. Chem., 1985, 28, 788.

2 M. Haase-Held, M. Hatzis and J. Mann, J. Chem. Soc., Perkin Trans. 1, 1993, 2907.

3 M. Numazawa and M. Tachibana, J. Chem. Soc., Perkin Trans. I, 1993, 2975.
4 A. Abad, C. Argulló, M. Arnó, L. R. Domingo and R. J. Zaragozá, Org. Prep. Proced. Int., 1991, 23, 321; P. Ceccherelli, M. Curini, R. Pellicciari and M. Tingoli, J. Chem. Soc., Perkin Trans. I, 1980, 1924; P. Ceccherelli, M. Curini, R. Pellicciari, E. Wenkert, L. L. Davis, B. L. Mylari, M. F. Solomon and R. J. Warnet, J. Org. Chem., 1982, 47, 3242; P. Ceccherelli, M. Curinı and R. Pellicciari, Farmaco, Ed. Sci., 1982, 37, 145; H. M. C. Ferraz, T. J. Brocksom, A. C. Pinto, M. A. Abla and D. H. T. Zocher, Tetrahedron Lett., 1986, 27, 811; B. Arreguy San Miguel, B. Maillard and B. Delmond, Tetrahedron Lett., 1987, 28, 2127; M. Bordell Martin, A. Fernández Mateos and J. de Pascual Teresa, An. Quim. (C), 1988, 84, 73.
5 H. C. Brown, Boranes in Organic Chemistry, Cornell University Press, Ithaca, New York, 1972; Organic Synthesis via Boranes, Wiley, New York, 1975.
6 P. F. Vlad and N. D. Ungur, Synthesis, 1983, 216; S. Patai, The Chemistry of the Ether Linkage, Wiley, New York, 1967, pp. 457-460, 468-470.
7 S. K. Chaudhary and O. Hernández, Tetrahedron Lett., 1975, 95.
8 R. C. Cambie, B. A. Grigor, R. C. Hayward and A. J. Nielson, Aust. J. Chem., 1974, 27, 2017.
9 W. G. Salmond, M. A. Barta and J. C. Havens, J. Org. Chem., 1978, 43, 2057.
10 P. H. J. Carlsen, T. Katsuki, V. S. Martin and K. B. Sharpless, J. Org. Chem., 1981, 46, 3936.
11 H. B. Henbest, D. N. Jones and G. P. Slater, J. Chem. Soc., 1961, 4472.

12 D. H. R. Barton and J. F. Eastham, J. Chem. Soc., 1953, 424; R. L. Clarke, J. Am. Chem. Soc., 1960, 82, 4629; P. A. Grieco, S. Ferriño, G. Vidari and J. C. Hoffman, J. Org. Chem., 1981, 46, 1022.

13 D. J. Sam and H. E. Simmons, J. Am. Chem. Soc., 1972, 94, 4024.
Paper 4/05735J
Received 20th September 1994
Accepted 24th October 1994

